Keywords: Offline Safe Reinforcement Learning, Constraint-conditioned Actor-Critic, Data Generation, Out-of-distribution Detection, Zero-shot Adaptation
Abstract: Offline safe reinforcement learning (OSRL) aims to learn policies with high rewards while satisfying safety constraints solely from data collected offline. However, the learned policies often struggle to handle states and actions that are not present or out-of-distribution (OOD) from the offline dataset, which can result in violation of the safety constraints or overly conservative behaviors during their online deployment. Moreover, many existing methods are unable to learn policies that can adapt to varying constraint thresholds. To address these challenges, we propose constraint-conditioned actor-critic (CCAC), a novel OSRL method that models the relationship between state-action distributions and safety constraints, and leverages this relationship to regularize critics and policy learning. CCAC learns policies that can effectively handle OOD data and adapt to varying constraint thresholds. Empirical evaluations on the $\texttt{DSRL}$ benchmarks show that CCAC significantly outperforms existing methods for learning adaptive, safe, and high-reward policies.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12802
Loading