Leveraging Uncertainty Estimates To Improve Classifier Performance

Published: 16 Jan 2024, Last Modified: 16 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Uncertainty estimation, binary classification, imbalanced classification, score recalibration, uncertainty based decision making, classification decision boundary, bin packing, estimation bias, posterior networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: 2D decision boundary on model score & uncertainty space boosts binary classification performance
Abstract: Binary classification typically involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements (e.g., maximizing recall for a precision bound). However, model scores are often not aligned with true positivity rate. This is especially true when the training involves a differential sampling of classes or there is distributional drift between train and test settings. In this paper, we provide theoretical analysis and empirical evidence of the dependence of estimation bias on both uncertainty and model score. Further, we formulate the decision boundary selection using both model score and uncertainty, prove that it is NP-hard, and present algorithms based on dynamic programming and isotonic regression. Evaluation of the proposed algorithms on three real-world datasets yield 25\%-40\% improvement in recall at high precision bounds over the traditional approach of using model score alone, highlighting the benefits of leveraging uncertainty.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 5267
Loading