Keywords: Stochastic Polyak Step-size, SGD, Stochastic Heavy Ball, Convergence Analysis, Convex Optimization, Momentum
TL;DR: Efficient convergence analysis of SGD with stochastic Polyak step-sizes and heavy-ball momentum.
Abstract: Stochastic gradient descent with momentum, also known as Stochastic Heavy Ball method (SHB), is one of the most popular algorithms for solving large-scale stochastic optimization problems in various machine learning tasks. In practical scenarios, tuning the step-size and momentum parameters of the method is a prohibitively expensive and time-consuming process. In this work, inspired by the recent advantages of stochastic Polyak step-size in the performance of stochastic gradient descent (SGD), we propose and explore new Polyak-type variants suitable for the update rule of the SHB method. In particular, using the Iterate Moving Average (IMA) viewpoint of SHB, we propose and analyze three novel step-size selections: MomSPSmax, MomDecSPS, and MomAdaSPS. For MomSPSmax, we provide convergence guarantees for SHB to a neighborhood of the solution for convex and smooth problems (without assuming interpolation). If interpolation is also satisfied, then using MomSPSmax, SHB converges to the true solution at a fast rate matching the deterministic HB. The other two variants, MomDecSPS and MomAdaSPS, are the first adaptive step-size for SHB that guarantee convergence to the exact minimizer - without a priori knowledge of the problem parameters and without assuming interpolation. Our convergence analysis of SHB is tight and obtains the convergence guarantees of stochastic Polyak step-size for SGD as a special case. We supplement our analysis with experiments validating our theory and demonstrating the effectiveness and robustness of our algorithms.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5124
Loading