Boundary-Aware Fully Convolutional Network for Brain Tumor Segmentation.Open Website

2017 (modified: 17 May 2023)MICCAI (2) 2017Readers: Everyone
Abstract: We propose a novel, multi-task, fully convolutional network (FCN) architecture for automatic segmentation of brain tumor. This network extracts multi-level contextual information by concatenating hierarchical feature representations extracted from multimodal MR images along with their symmetric-difference images. It achieves improved segmentation performance by incorporating boundary information directly into the loss function. The proposed method was evaluated on the BRATS13 and BRATS15 datasets and compared with competing methods on the BRATS13 testing set. Segmented tumor boundaries obtained were better than those obtained by single-task FCN and by FCN with CRF. The method is among the most accurate available and has relatively low computational cost at test time.
0 Replies

Loading