Abstract: Social media allows the public to access information conveniently, in which the false messages that are eye-catching may spread fast. In this paper, we propose a two-stage confidence-guided boundary adaption (CBA) network, consisting of a feature preprocessing (FP) module, a biased ambiguity learning (BA) module and a confidence-guided boundary adaptation (CG) module. In the first stage, the FP module obtains the textual and visual features, which are fused by conducting the visual-to-textual and textual-to-visual correlation coefficients with attention mechanism. Furthermore, BA evaluates the distribution distance between fused features and single modalities to determine the weights between modalities, capturing the semantics of key modality. In the second stage, CG leverages samples from the low-confidence interval to generate new instances using a mixup of augmentation techniques, aiming to occupy the decision space and optimize the decision boundary of the classifier. Extensive experiments on two public datasets show that our CBA model is 1.6% and 2.6% higher than the state-of-the-art methods.
Loading