Keywords: strategic classification, game theory, strategic machine learning, algorithmic game theory
TL;DR: We study strategic classification when participating agents induce externality, from a theoretical perspective.
Abstract: We propose a new variant of the strategic classification problem: a principal reveals a classifier, and $n$ agents report their (possibly manipulated) features to be classified. Motivated by real-world applications, our model crucially allows the manipulation of one agent to affect another; that is, it explicitly captures inter-agent externalities. The principal-agent interactions are formally modeled as a Stackelberg game, with the resulting agent manipulation dynamics captured as a simultaneous game. We show that under certain assumptions, the pure Nash Equilibrium of this agent manipulation game is unique and can be efficiently computed. Leveraging this result, PAC learning guarantees are established for the learner: informally, we show that it is possible to learn classifiers that minimize loss on the distribution, even when a random number of agents are manipulating their way to a pure Nash Equilibrium. We also comment on the optimization of such classifiers through gradient-based approaches. This work sets the theoretical foundations for a more realistic analysis of classifiers that are robust against multiple strategic actors interacting in a common environment.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2686
Loading