Information Retention via Learning Supplemental Features

Published: 16 Jan 2024, Last Modified: 14 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Information Retention, Few-shot Learning, Deep Neural Network
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The information bottleneck principle provides an information-theoretic method for learning a good representation as a trade-off between conciseness and predictive ability, which can reduce information redundancy, eliminate irrelevant and superfluous features, and thus enhance the in-domain generalizability. However, in low-resource or out-of-domain scenarios where the assumption of i.i.d does not necessarily hold true, superfluous (or redundant) relevant features may be supplemental to the mainline features of the model, and be beneficial in making prediction for test dataset with distribution shift. Therefore, instead of squeezing the input information by information bottleneck, we propose to keep as much relevant information as possible in use for making predictions. A three-stage supervised learning framework is designed and implemented to jointly learn the mainline and supplemental features, relieving supplemental features from the suppression of mainline features. Extensive experiments have shown that the learned representations of our method have good in-domain and out-of-domain generalization abilities, especially in low-resource cases.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 4712
Loading