Transparent Objects: A Corner Case in Stereo Matching

Published: 04 Jul 2023, Last Modified: 25 Jan 20262023 IEEE International Conference on Robotics and Automation (ICRA)EveryoneCC BY-NC 4.0
Abstract: Stereo matching is a common technique used in 3D perception, but transparent objects such as reflective and penetrable glass pose a challenge as their disparities are often estimated inaccurately. In this paper, we propose transparency-aware stereo (TA-Stereo), an effective solution to tackle this issue. TA-Stereo first utilizes a semantic segmentation or salient object detection network to identify transparent objects, and then homogenizes them to enable stereo matching algorithms to handle them as non-transparent objects. To validate the effectiveness of our proposed TA-Stereo strategy, we collect 260 images containing transparent objects from the KITTI Stereo 2012 and 2015 datasets and manually label pixel-level ground truth. We evaluate our strategy with six deep stereo networks and two types of transparent object detection methods. Our experiments demonstrate that TA-Stereo significantly improves the disparity accuracy of transparent objects.
Loading