Keywords: Large Multimodal Models, Data Selection, Robustness
TL;DR: We design an efficient data selection approach to construct a robust training mixture for visual instruction tuning in large multimodal models.
Abstract: Selecting a compact subset of visual instruction–following data has emerged as an effective way to align large multimodal models with human intentions while avoiding the high cost of full-dataset training. Yet we observe that both full-data training and existing state-of-the-art data selection methods tend to inherit underlying dataset biases such as position bias and spurious correlations, leading to biased model behaviors. To address this issue, we introduce ARDS, a robustness-aware targeted visual instruction-selection framework that explicitly mitigates these weaknesses, sidestepping the need for access to downstream data or time-consuming gradient computation. Specifically, we first identify the worst-case evaluation subgroups through visual and textual task-specific perturbations. The robust training mixture is then constructed by prioritizing samples that are semantically closer to these subgroups in a rich multimodal embedding space. Extensive experiments demonstrate that ARDS substantially boosts both robustness and data efficiency for visual instruction tuning. We also showcase that the robust mixtures produced with a smaller model transfer effectively to larger architectures. Our code and selected datasets that have been demonstrated transferable across models are available at https://github.com/xyang583/ARDS.
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 24790
Loading