Eyes on the Prize: Improved Perception for Robust Dynamic GraspingDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 06 Nov 2023CoRR 2022Readers: Everyone
Abstract: This paper introduces DGBench, a fully reproducible open-source testing system to enable benchmarking of dynamic grasping in environments with unpredictable relative motion between robot and object. We use the proposed benchmark to compare several visual perception arrangements. Traditional perception systems developed for static grasping are unable to provide feedback during the final phase of a grasp due to sensor minimum range, occlusion, and a limited field of view. A multi-camera eye-in-hand perception system is presented that has advantages over commonly used camera configurations. We quantitatively evaluate the performance on a real robot with an image-based visual servoing grasp controller and show a significantly improved success rate on a dynamic grasping task.
0 Replies

Loading