Abstract: Recent developments triggered by initiatives such as the Semantic Web, Linked Open Data, the Web of Things, and geographic information systems resulted in the wide and increasing availability of machine-processable data and knowledge in the form of data streams and knowledge bases. Applications building on such knowledge require reasoning with modal and intensional concepts, such as time, space, and obligations, that are defeasible. E.g., in the presence of data streams, conclusions may have to be revised due to newly arriving information. The current literature features a variety of domain-specific formalisms that allow for defeasible reasoning using specific intensional concepts. However, many of these formalisms are computationally intractable and limited to one of the mentioned application domains. In this paper, we define a general method for obtaining defeasible inferences over intensional concepts, and we study conditions under which these inferences are computable in polynomial time.
Loading