HyperHatePrompt: A Hypergraph-based Prompting Fusion Model for Multimodal Hate Detection

Published: 01 Jan 2025, Last Modified: 17 May 2025COLING 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Multimodal hate detection aims to identify hate content across multiple modalities for promoting a harmonious online environment. Despite promising progress, three critical challenges, the absence of implicit hateful cues, the cross-modal-induced hate, and the diversity of hate target groups, inherent in the multimodal hate detection task, have been overlooked. To address these challenges, we propose a hypergraph-based prompting fusion model. Our model first uses tailored prompts to infer implicit hateful cues. It then introduces hyperedges to capture cross-modal-induced hate and applies a diversity-oriented hyperedge expansion strategy to account for different hate target groups. Finally, hypergraph convolution fuses diverse hateful cues, enhancing the exploration of cross-modal hate and targeting specific groups. Experimental results on two benchmark datasets show that our model achieves state-of-the-art performance in multimodal hate detection.
Loading