6-DOF motion blur synthesis and performance evaluation of light field deblurringDownload PDFOpen Website

2019 (modified: 05 Nov 2022)Multim. Tools Appl. 2019Readers: Everyone
Abstract: Motion deblurring is essential for reconstructing sharp images from given a blurry input caused by the camera motion. The complexity of this problem increases in a light field due to its depth-dependent blur constraint. A method of generating synthetic 3 degree-of-freedom (3-DOF) translation blur on a light field image without camera rotation has been introduced. In this study, we generate a camera translation and rotation (6-DOF) motion blur model that preserves the consistency of the light field image. Our experiment results show that the proposed blur model can maintain the parallax information (depth-dependent blur) in a light field image. Furthermore, we produce a synthetic blurry light field dataset based on the 6-DOF model. Finally, to validate the usability of the synthetic dataset, we conduct extensive benchmarking using state-of-the-art motion deblurring algorithms.
0 Replies

Loading