Keywords: We show that Knowledge Distillation-based FL is naturally more resilient to malicious clients than parameter-sharing approaches, but we identify novel attack strategies that can still disrupt training and propose effective defenses against them.
Abstract: Federated Learning (FL) algorithms using Knowledge Distillation (KD) have received increasing attention due to their favorable properties with respect to privacy, non-i.i.d. data and communication cost. These methods depart from transmitting model parameters and instead communicate information about a learning task by sharing predictions on a public dataset. In this work, we study the performance of such approaches in the byzantine setting, where a subset of the clients act in an adversarial manner aiming to disrupt the learning process. We show that KD-based FL algorithms are remarkably resilient and analyze how byzantine clients can influence the learning process. Based on these insights, we introduce two new byzantine attacks and demonstrate their ability to break existing byzantine-resilient methods. Additionally, we propose a novel defence method which enhances the byzantine resilience of KD-based FL algorithms. Finally, we provide a general framework to obfuscate attacks, making them significantly harder to detect, thereby improving their effectiveness.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3724
Loading