Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph Diffusion, Discrete Diffusion, Equivariance, Symmetries
TL;DR: We propose aligned permutation equivariance in order to break the symmetries of equivariant denoisers in graph diffusion.
Abstract: Graph diffusion models, dominant in graph generative modeling, remain underexplored for graph-to-graph translation tasks like chemical reaction prediction. We demonstrate that standard permutation equivariant denoisers face fundamental limitations in these tasks due to their inability to break symmetries in noisy inputs. To address this, we propose \emph{aligning} input and target graphs to break input symmetries while preserving permutation equivariance in non-matching graph portions. Using retrosynthesis (i.e., the task of predicting precursors for synthesis of a given target molecule) as our application domain, we show how alignment dramatically improves discrete diffusion model performance from $5$\% to a SOTA-matching $54.7$\% top-1 accuracy. Code is available at https://github.com/Aalto-QuML/DiffAlign.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10192
Loading