Advancing the Lower Bounds: an Accelerated, Stochastic, Second-order Method with Optimal Adaptation to Inexactness

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Second-order methods, convex optimization, stochastic optimization, Cubic Newton Method, high-order methods, tensor methods, lower bounds
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We present a new accelerated stochastic second-order method that is robust to both gradient and Hessian inexactness, typical in machine learning. We establish theoretical lower bounds and prove that our algorithm achieves optimal convergence in both gradient and Hessian inexactness in this key setting. We further introduce a tensor generalization for stochastic higher-order derivatives. When the oracles are non-stochastic, the proposed tensor algorithm matches the global convergence of Nesterov Accelerated Tensor method. Both algorithms allow for approximate solutions of their auxiliary subproblems with verifiable conditions on the accuracy of the solution.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 5556
Loading