FHA-Kitchens: A Novel Dataset for Fine-Grained Hand Action Recognition in Kitchen Scenes

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: hand action recognition, fine-grained, dataset, benchmark
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: A typical task in the field of video understanding is hand action recognition, which has a wide range of applications. Existing works either mainly focus on full-body actions, or the defined action categories are relatively coarse-grained. In this paper, we propose FHA-Kitchens, a novel dataset of fine-grained hand actions in kitchen scenes. In particular, we focus on human hand interaction regions and perform deep excavation to further refine hand action information and interaction regions. Our FHA-Kitchens dataset consists of 2,377 video clips and 30,047 images collected from 8 different types of dishes, and all hand interaction regions in each image are labeled with high-quality fine-grained action classes and bounding boxes. We represent the action information in each hand interaction region as a triplet, resulting in a total of 878 action triplets. Based on the constructed dataset, we benchmark representative action recognition and detection models on the following three tracks: (1) supervised learning for hand interaction region and object detection, (2) supervised learning for fine-grained hand action recognition, and (3) intra- and inter-class domain generalization for hand interaction region detection. The experimental results offer compelling empirical evidence that highlights the challenges inherent in fine-grained hand action recognition, while also shedding light on potential avenues for future research, particularly in relation to pre-training strategy, model design, and domain generalization. The dataset will be released on the FHA-Kitchens project website.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9109
Loading