Abstract: Electric Free Floating Car Sharing systems offer a convenient and environmentally-friendly way to move in cities. However, their design and deployment is not a trivial task. In this work, we focus on fleet charging management, aiming at maximizing the number of trips of users, while minimizing the cost of relocating cars for charging. In particular, we compare two different car charging infrastructures: a centralised charging hub in a highly dynamic zone of the city, and a distributed set of charging poles around the most-used zones, where users can eventually contribute to plug cars. For this scope, we build a data-driven mobility demand model and a simulator that we use to study the performance and costs of fleet charging management. As a case study, we first consider the city of Turin. Then, we extend the results to three other cities (Milan, New York City and Vancouver). Results show that, given enough charging capacity, a distributed infrastructure is superior in terms of both satisfied trips and charging relocation cost. Additionally, with the contribution of users, the relocation cost might decrease even further.
Loading