POWDR: Pathology-preserving Outpainting with Wavelet Diffusion for 3D MRI

03 Dec 2025 (modified: 15 Dec 2025)MIDL 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion Models, Outpainting, 3D MRI, Pathology Preservation, Medical Image Synthesis
Abstract: Medical imaging datasets often suffer from class imbalance and limited availability of pathology-rich cases, which constrains the performance of machine learning models for segmentation, classification, and vision–language tasks. To address this challenge, we propose POWDR, a pathology-preserving outpainting framework for 3D MRI based on a conditioned wavelet diffusion model. Unlike conventional augmentation or unconditional synthesis, POWDR retains real pathological regions while generating anatomically plausible surrounding tissue, enabling diversity without fabricating lesions. Our approach leverages wavelet-domain conditioning to enhance high-frequency detail and mitigate blurring common in latent diffusion models. We introduce a random connected mask training strategy to overcome conditioning-induced collapse and improve diversity outside the lesion. POWDR is evaluated on brain MRI using BraTS datasets and extended to knee MRI to demonstrate tissue-agnostic applicability. Quantitative metrics (FID, SSIM, LPIPS) confirm image realism, while diversity analysis shows significant improvement with random-mask training (cosine similarity reduced from 0.9947 to 0.9580; KL divergence increased from 0.00026 to 0.01494). Clinically relevant assessments reveal gains in tumor segmentation performance using nnU-Net, with Dice scores improving from 0.6992 to 0.7137 when adding 50 synthetic cases. Tissue volume analysis indicates no significant differences for CSF and GM compared to real images. These findings highlight POWDR as a practical solution for addressing data scarcity and class imbalance in medical imaging. The method is extensible to multiple anatomies and offers a controllable framework for generating diverse, pathology-preserving synthetic data to support robust model development.
Primary Subject Area: Image Synthesis
Secondary Subject Area: Application: Radiology
Registration Requirement: Yes
Visa & Travel: Yes
Read CFP & Author Instructions: Yes
Originality Policy: Yes
Single-blind & Not Under Review Elsewhere: Yes
LLM Policy: Yes
Submission Number: 259
Loading