On the Possibilities of AI-Generated Text Detection: A Sample Complexity Analysis

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: AI Text Detection, Zero Shot Detection, Large Language Models
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: AI-generated text detection is possible when we have enough observations
Abstract: Our work addresses the critical issue of distinguishing text generated by Large Language Models (LLMs) from human-produced text, a task essential for numerous applications. Despite ongoing debate about the feasibility of such differentiation, we present evidence supporting its consistent achievability, except when human and machine text distributions are indistinguishable across their entire support. Drawing from information theory, we argue that as machine-generated text approximates human-like quality, the sample size needed for detection increases. We establish precise sample complexity bounds for detecting AI-generated text, laying groundwork for future research aimed at developing advanced, multi-sample detectors. Our empirical evaluations across multiple datasets (Xsum, Squad, IMDb, and Kaggle FakeNews) confirm the viability of enhanced detection methods. We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero. Our findings align with OpenAI's empirical data related to sequence length, marking the first theoretical substantiation for these observations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6790
Loading