Abstract: Removing noise from images, a.k.a image denoising, can be a very challenging task since the type and amount of noise can greatly vary for each image due to many factors including a camera model and capturing environments. While there have been striking improvements in image Denoising with the emergence of advanced deep learning architectures and real-world datasets, recent denoising net-works struggle to maintain performance on images with noise that has not been seen during training. One typical approach to address the challenge would be to adapt a Denoising network to new noise distribution. Instead, in this work, we shift our focus to adapting the input noise itself, rather than adapting a network. Thus, we keep a pretrained network frozen, and adapt an input noise to capture the fine-grained deviations. As such, we propose a new denoising algorithm, dubbed Learning-to-Adapt-Noise (LAN), where a learnable noise offset is directly added to a given noisy image to bring a given input noise closer towards the noise distribution a denoising network is trained to handle. Consequently, the proposed framework exhibits performance improvement on images with unseen noise, displaying the potential of the proposed research direction.
Loading