An Empirical Study of the Neural Contextual Bandit AlgorithmsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Contextual Bandits, Neural Network, Neural Bandits
Abstract: Recent advances in representation learning have made significant influences on solutions of contextual bandit problems. Neural bandit algorithms have been actively developed and reported to gain extraordinary performance improvement against classical bandit algorithms in numerous papers. However, there lacks a comprehensive comparison among the existing neural bandit algorithms, and it is still not clear whether or when they can succeed in complex real-world problems. In this work, we present an inclusive empirical study on three different categories of existing neural bandit algorithms on several real-world datasets. The results show that such algorithms are highly competitive against their classical counterparts in most cases, however the advantage is not consistent. The results also reveal crucial challenges for future research in neural bandit algorithms.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
9 Replies

Loading