Recurrent Back-Projection Generative Adversarial Network for Video Super ResolutionDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Video Super Resolution, GANs, Temporal Coherence, Recurrent Projection.
TL;DR: Enhancing videos quality through the exploitation of Recurrent Back-Projection Generative Adversarial Networks
Abstract: In this paper, we propose a new Video Super Resolution algorithm in an attempt to generate videos that are temporally coherent, spatially detailed, and match human perception. To achieve this, we developed a new generative adversarial network named RBPGAN which is composed of two main components: a generator Network that exceeds other models for producing very high-quality frames, and a discriminator which outperforms others in terms of temporal consistency. The generator of the model uses a reduced recurrent back-projection network that takes a set of neighboring frames and a target frame applies SISR (Single Image Super Resolution) on each frame, and applies MISR (Multiple Image Super Resolution) through an encoder-decoder Back-Projection based approach to concatenate them and produce x4 resolution version of the target frame. The Spatio-temporal discriminator uses triplets of frames and penalizes the generator to generate the desired results. Our contribution results in a model that outperforms earlier work in terms of perceptual similarity and natural flow of frames, while maintaining temporal coherence and high-quality spatial details. The algorithm was tested on different datasets to eliminate bias.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
5 Replies

Loading