Keywords: task-adaptive pretraining, language models, importance sampling, domain adaptation
TL;DR: Scalable clustered importance sampling for LM pretraining: End-task accuracy is improved when pretraining on a generalist dataset resampled with task-specific importance sampling weights.
Abstract: Specialist language models (LMs) focus on a specific task or domain on which they often outperform generalist LMs of the same size. However, the specialist data needed to pretrain these models is only available in limited amount for most tasks. In this work, we build specialist models from large generalist training sets instead. We adjust the training distribution of the generalist data with guidance from the limited domain-specific data. We explore several approaches, with clustered importance sampling standing out. This method clusters the generalist dataset and samples from these clusters based on their frequencies in the smaller specialist dataset. It is scalable, suitable for pretraining and continued pretraining, it works well in multi-task settings. Our findings demonstrate improvements across different domains in terms of language modeling perplexity and accuracy on multiple-choice question tasks. We also present ablation studies that examine the impact of dataset sizes, clustering configurations, and model sizes.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7771
Loading