MLLM-TA: Leveraging Multimodal Large Language Models for Precise Temporal Video Grounding

Published: 01 Jan 2025, Last Modified: 09 May 2025IEEE Signal Process. Lett. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In untrimmed video tasks, identifying temporal boundaries in videos is crucial for temporal video grounding. With the emergence of multimodal large language models (MLLMs), recent studies have focused on endowing these models with the capability of temporal perception in untrimmed videos. To address the challenge, in this paper, we introduce a multimodal large language model named MLLM-TA with precise temporal perception to obtain temporal attention. Unlike the traditional MLLMs, answering temporal questions through one or two words related to temporal information, we leverage the text description proficiency of MLLMs to acquire video temporal attention with description. Specifically, we design a dual temporal-aware generative branches aimed at the visual space of the entire video and the textual space of global descriptions, simultaneously generating mutually supervised consistent temporal attention, thereby enhancing the video temporal perception capabilities of MLLMs. Finally, we evaluate our approach on both video grounding task and highlight detection task on three popular benchmarks, including Charades-STA, ActivityNet Captions and QVHighlights. The extensive results show that our MLLM-TA significantly outperforms previous approaches both on zero-shot and supervised setting, achieving state-of-the-art performance.
Loading