One-Pixel Shortcut: On the Learning Preference of Deep Neural NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024ICLR 2023 notable top 25%Readers: Everyone
Keywords: unlearnable examples, shortcut learning, one-pixel feature, deep neural network
TL;DR: We propose a model-free method to craft unlearnable example by perturbing only one pixel, and construct a benchmark containing images that are unlearnable by various existing methods to avoid shortcut learning.
Abstract: Unlearnable examples (ULEs) aim to protect data from unauthorized usage for training DNNs. Existing work adds $\ell_\infty$-bounded perturbations to the original sample so that the trained model generalizes poorly. Such perturbations, however, are easy to eliminate by adversarial training and data augmentations. In this paper, we resolve this problem from a novel perspective by perturbing only one pixel in each image. Interestingly, such a small modification could effectively degrade model accuracy to almost an untrained counterpart. Moreover, our produced \emph{One-Pixel Shortcut (OPS)} could not be erased by adversarial training and strong augmentations. To generate OPS, we perturb in-class images at the same position to the same target value that could mostly and stably deviate from all the original images. Since such generation is only based on images, OPS needs significantly less computation cost than the previous methods using DNN generators. Based on OPS, we introduce an unlearnable dataset called CIFAR-10-S, which is indistinguishable from CIFAR-10 by humans but induces the trained model to extremely low accuracy. Even under adversarial training, a ResNet-18 trained on CIFAR-10-S has only 10.61% accuracy, compared to 83.02% by the existing error-minimizing method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
16 Replies