Only Pay for What Is Uncertain: Variance-Adaptive Thompson Sampling

Published: 16 Jan 2024, Last Modified: 14 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Thompson Sampling, Multiarmed, Bandits, Gaussian, Gamma, MAB, Variance aware, Regret, Prior, Posterior, Bayesian, Tight, Guarantee, Empirical
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We address the problem of Gaussian MAB with unknown heterogeneous reward noise. We are the first to design a TS algorithm for this setting with near-optimal variance-aware regret. It is efficient, theoretically sound, and empirically competitive.
Abstract: Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, since the prior is used in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with \emph{unknown heterogeneous reward variances} and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first such result in the bandit literature. Finally, we corroborate our theory with experiments, which demonstrate the benefit of our variance-adaptive Bayesian algorithm over prior frequentist works. We also show that our approach is robust to model misspecification and can be applied with estimated priors.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 1076
Loading