Sparse Overdispersed Photon-Limited Signal Recovery with Upper and Lower Bounds

Published: 01 Jan 2023, Last Modified: 27 Sept 2024CAMSAP 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This study addresses the challenge of reconstructing sparse signals, a frequent occurrence in the context of overdispersed photon-limited imaging. While the noise behavior in such imaging settings is typically modeled using a Poisson distribution, the negative binomial distribution is more suitable in overdispersed scenarios where the noise variance exceeds the signal mean. Knowledge of the maximum and minimum signal intensity can be effectively utilized within the computational framework to enhance the accuracy of signal reconstruction. In this paper, we use a gradient-based method for sparse signal recovery that leverages a negative binomial distribution for noise modeling, enforces bound constraints to adhere to upper and lower signal intensity thresholds, and employs a sparsity-promoting regularization term. The numerical experiments we present demonstrate that the incorporation of these features significantly improves the reconstruction of sparse signals from overdispersed measurements.
Loading