Error Analysis of Multilingual Language Models in Machine Translation: A Case Study of English-Amharic Translation

Published: 01 Jan 2024, Last Modified: 19 May 2025EMNLP 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Multilingual large language models (mLLMs) have significantly advanced machine translation, yet challenges remain for low-resource languages like Amharic. This study evaluates the performance of state-of-the-art mLLMs, specifically NLLB-200 (NLLB3.3, NLLB1.3 Distilled1.3, NLB600) and M2M (M2M1.2B, M2M418), in English-Amharic bidirectional translation using the Lesan AI dataset. We employed both automatic and human evaluation methods to analyze translation errors. Automatic evaluation used BLEU, METEOR, chrF, and TER metrics, while human evaluation assessed translation quality at both word and sentence levels. Sentence-level accuracy was rated by annotators on a scale from 0 to 5, and word-level quality was evaluated using Multidimensional Quality Metrics. Our findings indicate that the NLLB3.3B model consistently outperformed other mLLMs across all evaluation methods. Common error included mistranslation, omission, untranslated segments, and additions, with mistranslation being particularly common. Punctuation and spelling errors were rare in our experiment.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview