Two-stage LLM Fine-tuning with Less Specialization and More Generalization

Published: 16 Jan 2024, Last Modified: 12 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: language model, Generalization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Pretrained large language models (LLMs) are general purpose problem solvers applicable to a diverse set of tasks with prompts. They can be further improved towards a specific task by fine-tuning on a specialized dataset. However, fine-tuning usually makes the model narrowly specialized on this dataset with reduced general in-context learning performances, which is undesirable whenever the fine-tuned model needs to handle additional tasks where no fine-tuning data is available. In this work, we first demonstrate that fine-tuning on a single task indeed decreases LLMs' general in-context learning performance. We discover one important cause of such forgetting, format specialization, where the model overfits to the format of the fine-tuned task.We further show that format specialization happens at the very beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework that reduces format specialization and improves generalization.ProMoT offloads task-specific format learning into additional and removable parameters by first doing prompt tuning and then fine-tuning the model itself with this soft prompt attached. With experiments on several fine-tuning tasks and 8 in-context evaluation tasks, we show that ProMoT achieves comparable performance on fine-tuned tasks to standard fine-tuning, but with much less loss of in-context learning performances across a board range of out-of-domain evaluation tasks. More importantly, ProMoT can even enhance generalization on in-context learning tasks that are semantically related to the fine-tuned task, e.g. ProMoT on En-Fr translation significantly improves performance on other language pairs, and ProMoT on NLI improves performance on summarization. Experiments also show that ProMoT can improve the generalization performance of multi-task training.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 8041
Loading