Keywords: tabular classification, tabular in-context learning transformer, fine-tuning
TL;DR: We introduce TabForestPFN, a fine-tuned tabular in-context learning transformer with improvements based on increasing the complexity of pretraining datasets.
Abstract: The recently introduced TabPFN pretrains an In-Context Learning (ICL) transformer on synthetic data to perform tabular data classification. In this work, we extend TabPFN to the fine-tuning setting, resulting in a significant performance boost. We also discover that fine-tuning enables ICL-transformers to create complex decision boundaries, a property regular neural networks do not have. Based on this observation, we propose to pretrain ICL-transformers on a new forest dataset generator which creates datasets that are unrealistic, but have complex decision boundaries. TabForest, the ICL-transformer pretrained on this dataset generator, shows better fine-tuning performance when pretrained on more complex datasets. Additionally, TabForest outperforms TabPFN on some real-world datasets when fine-tuning, despite having lower zero-shot performance due to the unrealistic nature of the pretraining datasets. By combining both dataset generators, we create TabForestPFN, an ICL-transformer that achieves excellent fine-tuning performance and good zero-shot performance.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3840
Loading