Towards Physics-informed Spatial Intelligence with Human Priors: An Autonomous Driving Pilot Study

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multimodal LLM, VLM, Spatial Intelligence, Autonomous Driving
Abstract: How to integrate and verify spatial intelligence in foundation models remains an open challenge. Current practice often proxies Visual-Spatial Intelligence (VSI) with purely textual prompts and VQA-style scoring, which obscures geometry, invites linguistic shortcuts, and weakens attribution to genuinely spatial skills. We introduce Spatial Intelligence Grid (SIG): a structured, grid-based schema that explicitly encodes object layouts, inter-object relations, and physically grounded priors. As a complementary channel to text, SIG provides a faithful, compositional representation of scene structure for foundation-model reasoning. Building on SIG, we derive SIG-informed evaluation metrics that quantify a model’s intrinsic VSI, which separates spatial capability from language priors. In few-shot in-context learning with state-of-the-art multimodal LLMs (e.g. GPT- and Gemini-family models), SIG yields consistently larger, more stable, and more comprehensive gains across all VSI metrics compared to VQA-only representations, indicating its promise as a data-labeling and training schema for learning VSI. We also release SIGBench, a benchmark of 1.4K driving frames annotated with ground-truth SIG labels and human gaze traces, supporting both grid-based machine VSI tasks and attention-driven, human-like VSI tasks in autonomous-driving scenarios.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 2806
Loading