VSEGAN: Visual Speech Enhancement Generative Adversarial NetworkDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 16 May 2023ICASSP 2022Readers: Everyone
Abstract: Speech enhancement is an essential task of improving speech quality in noise scenario. Several state-of-the-art approaches have introduced visual information for speech enhancement, since the visual aspect of speech is essentially unaffected by acoustic environment. This paper proposes a novel framework that involves visual information for speech enhancement, by incorporating a Generative Adversarial Network (GAN). In particular, the proposed visual speech enhancement GAN consists of two networks trained in adversarial manner, i) a generator that adopts multi-layer feature fusion convolution network to enhance input noisy speech, and ii) a discriminator that attempts to minimize the discrepancy between the distributions of the clean speech signal and enhanced speech signal. Experiment results demonstrated superior performance of the proposed model against several state-of-the-art models.
0 Replies

Loading