Look, Compare and Draw: Differential Query Transformer for Automatic Oil Painting

18 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Automatic Oil Painting, Stroke-based Rendering, Style Transfer, Sequence Prediction
TL;DR: Inspried by 'look, compare and draw', we propose a Differential Query Transformer for the automatic oil painting aesthetically and efficiently.
Abstract: This work introduces a new approach to automatic oil painting that emphasizes the creation of dynamic and expressive brushstrokes. A pivotal challenge lies in mitigating the duplicate and common-place strokes, which often lead to less aesthetic outcomes. Inspired from the human painting process, i.e., observing, comparing, and drawing, we incorporate differential image analysis into a neural oil painting model, allowing the model to effectively concentrate on the incremental impact of successive brushstrokes. To operationalize this concept, we propose the Differential Query Transformer (DQ-Transformer), a new architecture that leverages differentially derived image representations enriched with positional encoding to guide the stroke prediction process. This integration enables the model to maintain heightened sensitivity to local details, resulting in more refined and nuanced stroke generation. Furthermore, we incorporate adversarial training into our framework, enhancing the accuracy of stroke prediction and thereby improving the overall realism and fidelity of the synthesized paintings. Extensive qualitative evaluations, complemented by a controlled user study, validate that our DQ-Transformer surpasses existing methods in both visual realism and artistic authenticity, typically achieving these results with fewer strokes. The stroke-by-stroke painting animations are available on our anonymous website: https://differential-query-painter.github.io/DQ-painter/ .
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1601
Loading