Rebounding Bandits for Modeling Satiation EffectsDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Bandits, Boredom, Satiation, Recommender Systems, Dynamical Systems
Abstract: Psychological research shows that enjoyment of many goods is subject to satiation, with short-term satisfaction declining after repeated exposures to the same item. Nevertheless, proposed algorithms for powering recommender systems seldom model these dynamics, instead proceeding as though user preferences were fixed in time. In this work, we introduce rebounding bandits, a multi-armed bandit setup, where satiation dynamics are modeled as time-invariant linear dynamical systems. Expected rewards for each arm decline monotonically with consecutive exposures and rebound towards the initial reward whenever that arm is not pulled. Unlike classical bandit algorithms, methods for tackling rebounding bandits must plan ahead and model-based methods rely on estimating the parameters of the satiation dynamics. We characterize the planning problem, showing that the greedy policy is optimal when the arms exhibit identical deterministic dynamics. To address stochastic satiation dynamics with unknown parameters, we propose Explore-Estimate-Plan, an algorithm that pulls arms methodically, estimates the system dynamics, and then plans accordingly.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
13 Replies