Exposing Hidden Biases in Text-to-Image Models via Automated Prompt Search

ICLR 2026 Conference Submission20291 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: text-to-image, prompt search, bias detection, sociotechnical ai
TL;DR: An automated method for human-readable text-to-image prompt discovery, using LLM search plus sensitive attribute classifiers that act on diffusion activations, revealing previously undocumented biases.
Abstract: Text-to-image (TTI) diffusion models have achieved remarkable visual quality, yet they have been repeatedly shown to exhibit social biases across sensitive attributes such as gender, race and age. To mitigate these biases, existing approaches frequently depend on curated prompt datasets - either manually constructed or generated with large language models (LLMs) - as part of their training and/or evaluation procedures. Beside the curation cost, this also risks overlooking unanticipated, less obvious prompts that trigger biased generation, even in models that have undergone debiasing. In this work, we introduce Bias-Guided Prompt Search (BGPS), a framework that automatically generates prompts that aim to maximize the presence of biases in the resulting images. BGPS comprises two components: (1) an LLM instructed to produce attribute-neutral prompts and (2) attribute classifiers acting on the TTI’s internal representations that steer the decoding process of the LLM toward regions of the prompt space that amplify the image attributes of interest. We conduct extensive experiments on Stable Diffusion 1.5 and a state-of-the-art debiased model and discover an array of subtle and previously undocumented biases that severely deteriorate fairness metrics. Crucially, the discovered prompts are interpretable, i.e they may be entered by a typical user, quantitatively improving the perplexity metric compared to a prominent hard prompt optimization counterpart. Our findings uncover TTI vulnerabilities, while BGPS expands the bias search space and can act as a new evaluation tool for bias mitigation.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 20291
Loading