Neural Disentanglement of Query Difficulty and Semantics

Published: 01 Jan 2023, Last Modified: 26 Apr 2025CIKM 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Researchers have shown that the retrieval effectiveness of queries may depend on other factors in addition to the semantics of the query. In other words, several queries expressed with the same intent, and even using overlapping keywords, may exhibit completely different degrees of retrieval effectiveness. As such, the objective of our work in this paper is to propose a neural disentanglement method that is able to disentangle query semantics from query difficulty. The disentangled query semantics representation provides the means to determine semantic association between queries whereas the disentangled query difficulty representation would allow for the estimation of query effectiveness. We show through our experiments on the query performance prediction; and, query similarity calculation tasks that our proposed disentanglement method is able to show better performance compared to the state of the art.
Loading