Keywords: Machine Unlearning, Graph Neural Networks, Scalability
TL;DR: We propose a certifiable graph unlearning model that scales to billion-edge graphs by non-trivial theoretical analysis.
Abstract: Graph unlearning has emerged as a pivotal research area for ensuring privacy protection, given the widespread adoption of Graph Neural Networks (GNNs) in applications involving sensitive user data. Among existing studies, certified graph unlearning is distinguished by providing robust privacy guarantees. However, current certified graph unlearning methods are impractical for large-scale graphs because they necessitate the costly re-computation of graph propagation for each unlearning request. Although numerous scalable techniques have been developed to accelerate graph propagation for GNNs, their integration into certified graph unlearning remains uncertain as these scalable approaches introduce approximation errors into node embeddings. In contrast, certified graph unlearning demands bounded model error on exact node embeddings to maintain its certified guarantee.
To address this challenge, we present ScaleGUN, the first approach to scale certified graph unlearning to billion-edge graphs. ScaleGUN integrates the approximate graph propagation technique into certified graph unlearning, offering certified guarantees for three unlearning scenarios: node feature, edge and node unlearning.
Extensive experiments on real-world datasets demonstrate the efficiency and unlearning efficacy of ScaleGUN. Remarkably, ScaleGUN accomplishes $(\epsilon,\delta)=(1,10^{-4})$ certified unlearning on the billion-edge graph ogbn-papers100M in 20 seconds for a 5,000 random edge removal request -- of which only 5 seconds are required for updating the node embeddings -- compared to 1.91 hours for retraining and 1.89 hours for re-propagation. Our code is available at https://anonymous.4open.science/r/ScaleGUN-5921.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 881
Loading