TrajMamba: An Efficient and Semantic-rich Vehicle Trajectory Pre-training Model

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Trajectory Representation Learning, Spatio-Temporal Data Mining, Self-supervised
TL;DR: We propose a novel trajectory representation learning approach that efficiently learns travel semantics, including movement patterns and travel purposes, from vehicle trajectories.
Abstract: Vehicle GPS trajectories record how vehicles move over time, storing valuable travel semantics, including movement patterns and travel purposes. Learning travel semantics effectively and efficiently is crucial for real-world applications of trajectory data, which is hindered by two major challenges. First, travel purposes are tied to the functions of the roads and points-of-interest (POIs) involved in a trip. Such information is encoded in textual addresses and descriptions and introduces heavy computational burden to modeling. Second, real-world trajectories often contain redundant points, which harm both computational efficiency and trajectory embedding quality. To address these challenges, we propose TrajMamba, a novel approach for efficient and semantically rich vehicle trajectory learning. TrajMamba introduces a Traj-Mamba Encoder that captures movement patterns by jointly modeling both GPS and road perspectives of trajectories, enabling robust representations of continuous travel behaviors. It also incorporates a Travel Purpose-aware Pre-training procedure to integrate travel purposes into the learned embeddings without introducing extra overhead to embedding calculation. To reduce redundancy in trajectories, TrajMamba features a Knowledge Distillation Pre-training scheme to identify key trajectory points through a learnable mask generator and obtain effective compressed trajectory embeddings. Extensive experiments on two real-world datasets and three downstream tasks show that TrajMamba outperforms state-of-the-art baselines in both efficiency and accuracy.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 10520
Loading