Keywords: LLM benchmark, Scientific knowledge evaluation
TL;DR: We propose the SciKnowEval benchmark, a novel framework that systematically evaluates LLMs across five progressive levels of scientific knowledge.
Abstract: Large language models (LLMs) have gained increasing prominence in scientific research, but there is a lack of comprehensive benchmarks to fully evaluate their proficiency in understanding and mastering scientific knowledge.To address this need, we introduce the SciKnowEval benchmark, a novel framework that systematically evaluates LLMs across five progressive levels of scientific knowledge: studying extensively, inquiring earnestly, thinking profoundly, discerning clearly, and practicing assiduously. These levels aim to assess the breadth and depth of scientific knowledge in LLMs, including memory, comprehension, reasoning, discernment, and application. Specifically, we first construct a large-scale evaluation dataset encompassing 70K multi-level scientific problems and solutions in the domains of biology, chemistry, physics, and materials science. By leveraging this dataset, we benchmark 26 advanced open-source and proprietary LLMs using zero-shot and few-shot prompting strategies. The results reveal that despite the state-of-the-art performance of proprietary LLMs, there is still significant room for improvement, particularly in addressing scientific reasoning and applications. We anticipate that SciKnowEval will establish a standard for benchmarking LLMs in science research and promote the development of stronger scientific LLMs.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8551
Loading