Zero-Shot Performance Prediction for Probabilistic Scaling Laws

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-SA 4.0
Keywords: Gaussian Processes, Active Learning, Scaling Laws
TL;DR: Leveraging correlations among hierarchies present in natural language processing tasks is used for zero-shot peformance prediction of learning curves for scaling law research.
Abstract: The prediction of learning curves for Natural Language Processing (NLP) models enables informed decision-making to meet specific performance objectives, while reducing computational overhead and lowering the costs associated with dataset acquisition and curation. In this work, we formulate the prediction task as a multitask learning problem, where each task’s data is modelled as being organized within a two-layer hierarchy. To model the shared information and dependencies across tasks and hierarchical levels, we employ latent variable multi-output Gaussian Processes, enabling to account for task correlations and supporting zero-shot prediction of learning curves (LCs). We demonstrate that this approach facilitates the development of probabilistic scaling laws at lower costs. Applying an active learning strategy, LCs can be queried to reduce predictive uncertainty and provide predictions close to ground truth scaling laws. We validate our framework on three small-scale NLP datasets with up to $30$ LCs. These are obtained from nanoGPT models, from bilingual translation using mBART and Transformer models, and from multilingual translation using M2M100 models of varying sizes.
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 19697
Loading