Keywords: streaming generation, simultaneous translation, Transducer
Abstract: Streaming generation models are increasingly utilized across various fields, with the Transducer architecture being particularly popular in industrial applications. However, its input-synchronous decoding mechanism presents challenges in tasks requiring non-monotonic alignments, such as simultaneous translation, leading to suboptimal performance in these contexts. In this research, we address this issue by tightly integrating Transducer's decoding with the history of input stream via a learnable monotonic attention mechanism. Our approach leverages the forward-backward algorithm to infer the posterior probability of alignments between the predictor states and input timestamps, which is then used to estimate the context representations of monotonic attention in training. This allows Transducer models to adaptively adjust the scope of attention based on their predictions, avoiding the need to enumerate the exponentially large alignment space. Extensive experiments demonstrate that our MonoAttn-Transducer significantly enhances the handling of non-monotonic alignments in streaming generation, offering a robust solution for Transducer-based frameworks to tackle more complex streaming generation tasks. Codes are publicly available in supplementary materials.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 350
Loading