Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study

ICLR 2024 Workshop ME-FoMo Submission64 Authors

Published: 04 Mar 2024, Last Modified: 04 May 2024ME-FoMo 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generalization error, Mixture of Experts
Abstract: Mixture-of-Experts (MoE) represents an ensemble methodology that amalgamates predictions from several specialized sub-models (referred to as experts). This fusion is accomplished through a router mechanism, dynamically assigning weights to each expert's contribution based on the input data. Conventional MoE mechanisms select all available experts, incurring substantial computational costs. In contrast, Sparse Mixture-of-Experts (Sparse MoE) selectively engages only a limited number, or even just one expert, significantly reducing computation overhead while empirically preserving, and sometimes even enhancing, performance. Despite its wide-ranging applications and these advantageous characteristics, MoE's theoretical underpinnings have remained elusive. In this paper, we embark on an exploration of Sparse MoE's generalization error concerning various critical factors. Specifically, we investigate the impact of the number of data samples, the total number of experts, the sparsity in expert selection, the complexity of the routing mechanism, and the complexity of individual experts. Our analysis sheds light on how sparsity contributes to the MoE's generalization, offering insights from the perspective of classical learning theory.
Submission Number: 64
Loading