QDyLoRA: Quantized Dynamic Low-Rank Adaptation for Efficient Large Language Model Tuning

Published: 01 Jan 2024, Last Modified: 25 Jan 2025EMNLP (Industry Track) 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Finetuning large language models requires huge GPU memory, restricting the choice to acquire Larger models. While the quantized version of the Low-Rank Adaptation technique, named QLoRA, significantly alleviates this issue, finding the efficient LoRA rank is still challenging. Moreover, QLoRA is trained on a pre-defined rank and, therefore, cannot be reconfigured for its lower ranks without requiring further fine-tuning steps. This paper proposes QDyLoRA -Quantized Dynamic Low-Rank Adaptation-, as an efficient quantization approach for dynamic low-rank adaptation. Motivated by Dynamic LoRA, QDyLoRA is able to efficiently finetune LLMs on a set of pre-defined LoRA ranks. QDyLoRA enables fine-tuning Falcon-40b for ranks 1 to 64 on a single 32 GB V100-GPU through one round of fine-tuning. Experimental results show that QDyLoRA is competitive to QLoRA and outperforms when employing its optimal rank.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview