Keywords: natural language processing, large language models, statistical physics, phase transitions, critical phenomena, large-scale numerical experiments
TL;DR: We have discovered a temperature-induced phase transition in LLMs, with its critical properties similar to those of natural language.
Abstract: Large Language Models (LLMs) have demonstrated impressive performance. To understand their behaviors, we need to consider the fact that LLMs sometimes show qualitative changes. The natural world also presents such changes called phase transitions, which are defined by singular, divergent statistical quantities. Therefore, an intriguing question is whether qualitative changes in LLMs are phase transitions. In this work, we have conducted extensive analysis on texts generated by LLMs and suggested that a phase transition occurs in LLMs when varying the temperature parameter. Specifically, statistical quantities have divergent properties just at the point between the low-temperature regime, where LLMs generate sentences with clear repetitive structures, and the high-temperature regime, where generated sentences are often incomprehensible. In addition, critical behaviors near the phase transition point, such as a power-law decay of correlation and slow convergence toward the stationary state, are similar to those in natural languages. Our results suggest a meaningful analogy between LLMs and natural phenomena.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9993
Loading