Automatic acoustic classification of feline sex

Published: 01 Jan 2021, Last Modified: 13 Nov 2024Audio Mostly Conference 2021EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper presents a novel method for classifying the feline sex based on the respective vocalizations. Due to the size of the available dataset, we rely on tree-based classifiers which can efficiently learn classification rules in such poor data availability cases. More specifically, this work investigates the ability of random forests and boosting classifiers when trained with a wide range of acoustic features derived both from time and frequency domain. The considered classifiers are evaluated using standardized figures of merit including f1-score, recall, precision, and accuracy. The best-performing classifier was the CatBoost, while the obtained results are in line with the state-of-the-art accuracy levels in the field of animal sex classification.
Loading