Process-Supervised Reward Models for Clinical Note Generation: A Scalable Approach Guided by Domain Expertise
Abstract: Process-supervised reward models (PRMs), which verify large language model (LLM) outputs step-by-step, have achieved significant success in mathematical and coding problems. However, their application to other domains remains largely unexplored. In this work, we train a PRM to provide step-level reward signals for clinical notes generated by LLMs from patient-doctor dialogues. Guided by real-world clinician expertise, we carefully designed step definitions for clinical notes and utilized Gemini-Pro 1.5 to automatically generate process supervision data at scale. Our proposed PRM, trained on the LLaMA-3.1 8B instruct model, outperformed both Gemini-Pro 1.5 and the vanilla outcome-supervised reward model (ORM) in two key evaluations: (1) selecting gold-reference samples from error-containing ones, achieving 98.8% accuracy (versus 70.0% for the vanilla ORM and 93.8% for Gemini-Pro 1.5), and (2) selecting physician-preferred notes, achieving 56.2% accuracy (compared to 37.5% for the vanilla ORM and 50.0% for Gemini-Pro 1.5). Additionally, we conducted ablation studies to determine optimal loss functions and data selection strategies, along with physician reader studies to explore predictors of downstream Best-of-N performance. Our promising results suggest the potential of PRMs to extend beyond the clinical domain, offering a scalable and effective solution for diverse generative tasks.
Loading