DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM Quantization, LLM Inference, Efficiency, ML System
Abstract: How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding steps. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 11758
Loading