CAPGen: An Environment-Adaptive Generator of Adversarial Patches

ICLR 2025 Conference Submission1480 Authors

18 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Physical attack, Adversarial patch, Environment consistency
Abstract: Adversarial patches, often used to provide physical stealth protection for critical assets and assess perception algorithm robustness, usually neglect the need for visual harmony with the background environment, making them easily noticeable. Moreover, existing methods primarily concentrate on improving attack performance, disregarding the intricate dynamics of adversarial patch elements. In this work, we introduce the Camouflaged Adversarial Pattern Generator (CAPGen), a novel approach that leverages specific base colors from the surrounding environment to produce patches that seamlessly blend with their background for superior visual stealthiness while maintaining robust adversarial performance. We delve into the influence of both patterns (i.e., color-agnostic texture information) and colors on the effectiveness of attacks facilitated by patches, discovering that patterns exert a more pronounced effect on performance than colors. Based on these findings, we propose a rapid generation strategy for adversarial patches. This involves updating the colors of high-performance adversarial patches to align with those of the new environment, ensuring visual stealthiness without compromising adversarial impact. This paper is the first to comprehensively examine the roles played by patterns and colors in the context of adversarial patches.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1480
Loading