Grassmannian Geometry Meets Dynamic Mode Decomposition in DMD-GEN: A New Metric for Mode Collapse in Time Series Generative Models

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Time series, Generative models, Mode Collapse
Abstract: Generative models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) often fail to capture the full diversity of their training data, leading to mode collapse. While this issue is well-explored in image generation, it remains underinvestigated for time series data. We introduce a new definition of mode collapse specific to time series and propose a novel metric, DMD-GEN, to quantify its severity. Our metric utilizes Dynamic Mode Decomposition (DMD), a data-driven technique for identifying coherent spatiotemporal patterns, and employs Optimal Transport between DMD eigenvectors to assess discrepancies between the underlying dynamics of the original and generated data. This approach not only quantifies the preservation of essential dynamic characteristics but also provides interpretability by pinpointing which modes have collapsed. We validate DMD-GEN on both synthetic and real-world datasets using various generative models, including TimeGAN, TimeVAE, and DiffusionTS. The results demonstrate that DMD-GEN correlates well with traditional evaluation metrics for static data while offering the advantage of applicability to dynamic data. This work offers for the first time a definition of mode collapse for time series, improving understanding, and forming the basis of our tool for assessing and improving generative models in the time series domain.
Supplementary Material: zip
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12061
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview